Functional implications of modifying RyR-activating peptides for membrane permeability

*,¹Angela F. Dulhunty, ¹Louise Cengia, ¹Jacqui Young, ¹Suzy M. Pace, ¹Peta J. Harvey, ¹,²Graham D. Lamb, ¹,³Yiu-Ngok Chan, ¹,³Norbert Wimmer, ¹,³Istvan Toth & ¹Marco G. Casarotto

¹Division of Molecular Bioscience, John Curtin School of Medical Research, Australian National University, PO Box 334, Canberra, ACT 2601, Australia; ²The Department of Zoology, La Trobe University, Bundoora, Victoria, Australia and ³The School of Pharmacy, University of Queensland, Brisbane, Australia

- 1 Our aim was to determine whether lipoamino acid conjugation of peptides that are high-affinity activators of ryanodine receptor (RyR) channels would (a) render the peptides membrane permeable, (b) alter their structure or (a) reduce their activity. The peptides correspond to the A region of the II–III loop of the skeletal dihydropyridine receptor.
- 2 The lipoamino acid conjugation increased the apparent permeability of the peptide across the Caco-2 cell monolayer by up to ~ 20 -fold.
- 3 Nuclear magnetic resonance showed that the α -helical structure of critical basic residues, required for optimal activation of RyRs, was retained after conjugation.
- 4 The conjugated peptides were more effective in enhancing resting Ca²⁺ release, Ca²⁺-induced Ca²⁺ release and caffeine-induced Ca²⁺ release from isolated sarcoplasmic reticulum (SR) than their unconjugated counterparts, and significantly enhanced caffeine-induced Ca2+ release from mechanically skinned extensor digitorum longus (EDL) fibres.
- 5 The effect of both conjugated and unconjugated peptides on Ca²⁺ release from skeletal SR was 30-fold greater than their effect on either cardiac Ca²⁺ release or on the Ca²⁺ Mg²⁺ ATPase.
- 6 A small and very low affinity effect of the peptide in slowing Ca²⁺ uptake by the Ca²⁺, Mg²⁺ ATPase was exacerbated by lipoamino acid conjugation in both isolated SR and in skinned EDL
- 7 The results show that lipoamino acid conjugation of A region peptides increases their membrane permeability without impairing their structure or efficacy in activating skeletal and cardiac RyRs. British Journal of Pharmacology (2005) 144, 743-754. doi:10.1038/sj.bjp.0705981 Published online 13 December 2004

Keywords:

Lipoamino acid conjugation; ryanodine receptor; sarcoplasmic reticulum; skeletal muscle; cardiac muscle; Ca²⁺ release

Abbreviations: Caco-2, human colon carcinoma epithelial cell line; CICR, calcium-induced calcium release; DHPR, dihydropyridine receptor; EC coupling, excitation-contraction coupling; EDL, extensor digitorum longus; HBSS, Hanks' balanced salt solution; LC-MS, liquid chromatography-mass spectrometry; LHRH, luteinising hormone-releasing hormone; II-III loop, loop between the second and third membrane-spanning segment of the DHPR; P_{app} , apparent permeability coefficient; RyR, ryanodine receptor; SR, sarcoplasmic reticulum; TEER, trans-epithelial electrical resistance

Introduction

The ryanodine receptor (RyR) Ca²⁺ release channel is the sole conduit for Ca2+ release from internal stores in the sarcoplasmic reticulum (SR) to activate contraction in skeletal muscle and the heart. The RyR, either alone or in combination with the inositol 1,4,5-trisphosphate receptor (IP₃R), is also found in the endoplasmic reticulum, mitochondria, nuclear envelope and secretory vesicles of many cell types, including smooth muscle, neurones and lymphocytes. Despite the importance of this ion channel, there are few drugs available that can be used either as experimental probes for RyR activity or for therapeutic purposes.

A 20 amino-acid peptide (peptide A), corresponding to a part

of the loop between the second and third membrane-spanning

segment of the skeletal dihydropyridine receptor (DHPR),

is a part of a naturally occurring muscle protein and is a high-affinity activator of skeletal and cardiac RyR channels (El-Hayek et al., 1995; Dulhunty et al., 1999; Gurrola et al., 1999; Lamb et al., 2000; Stange et al., 2001; Dulhunty et al., 2002). Both the DHPR and the RyR are essential for skeletal muscle contraction (Tanabe et al., 1988). A strict alignment (Block et al., 1988) allows physical coupling between the II-III loop of the DHPR and the RyR to initiate skeletal-type excitation-contraction (EC) coupling (which is independent of external Ca²⁺). Although the A region of the II–III loop is not required for EC coupling (Proenza et al., 2000; Wilkens et al., 2001), it has been implicated in the overall physical interaction between the DHPR and RyR (Ahern et al., 2001).

^{*}Author for correspondence; E-mail: angela.dulhunty@anu.edu.au Published online 13 December 2004

A sequence of positively charged residues (El-Hayek et al., 1995; Gurrola et al., 1999; Casarotto et al., 2000, 2001), and the alignment of the residues along one surface of the molecule (Casarotto et al., 2000: 2001: Green et al., 2003), are critical for peptide A to activate RyR channels. Modified A peptides having the most stable α -helical structure are the strongest activators of the RyR and have a surface orientation of positively charged residues similar to that in two scorpion toxins, Imperatoxin A and Maurocalcine (Mosbah et al., 2000; Green et al., 2003). The toxins, like the peptide, are highaffinity activators of the RyR and thought to bind to a similar site on the RyR (Tripathy et al., 1998; Gurrola et al., 1999; Green et al., 2003). The A peptides are potentially useful as probes for RyR channel activity and would be more useful if they could be modified for membrane permeability without loss of function.

In this study, we have made the A peptides membrane permeable by conjugating them to C_{12} or C_{10} lipoamino acids, to alter their physico-chemical properties. Lipoamino acids are α amino acids with long alkyl side-chains, which can enhance the membrane permeability, intestinal absorption and metabolic stability of peptides and have been investigated extensively in drug delivery (Toth et al., 1999; Toth & Keri, 2003). We have assessed the permeability of the lipoamino acid-conjugated A peptides, examined their structure and assessed their ability to release Ca²⁺ from cardiac and skeletal SR vesicles and from the SR in skinned skeletal muscle fibres. The results show that the lipid modification of the A peptides (a) increased their permeability, (b) did not significantly alter their structure, (c) enhanced their ability to activate Ca²⁺ release from isolated SR, (d) did not significantly alter their ability to activate the RyR in skinned muscle fibres and (e) enhanced a lower-affinity action of the peptide on Ca²⁺ uptake by the Ca²⁺, Mg²⁺ ATPase in the SR.

Methods

Peptides and peptide synthesis

The A-series peptides, A1, A2, A1(D-R18) and A2(D-R18) (Table 1) were synthesised by the JCSMR Biomolecular Resource Facility using an Applied Biosystems 430A Peptide Synthesiser with purification to 98-100% using HPLC and mass spectroscopy. Stock peptide solutions ($\sim 2 \, \text{mM}$) were prepared in H₂O and frozen in $20 \, \mu l$ aliquots (Dulhunty et al., 1999).

Lipid conjugation

Lipoamino acids, α -aminodecanoic acid and α -aminododecanoic acid were synthesised (Gibbons *et al.*, 1990), purified, triturated with acetonitrile, then re-crystallised. The α -aminodecanoic acid was coupled to the resin once (or twice), then coupled to peptide A2 (D-R18) to yield A2(D-R18)- C_{10} (or A2(D-R18)- C_{10}). Likewise, α -aminododecanoic acid was coupled once to A2(D-R18) to obtain A2(D-R18)- C_{12} . Sequences of A2 and A2(D-R18) and the lipoamino acid structures are:

Membrane permeability assessment

Caco-2 (human colon carcinoma; American Type Culture Collection) epithelial cell lines were cultivated as monolayers on permeable filters (Artursson & Karlsson, 1991). The cells were maintained in tissue culture flasks (Nunc, Roskilde, Denmark) and seeded at $\sim 5 \times 10^5$ cells cm⁻² into 6.5 mm Transwells® with polycarbonate membranes (0.4 μ m pore, Costar, Cambridge, U.S.A.). The culture medium (Dulbecco's modified Eagle's medium, Gibco Paisley, Scotland) was supplemented with 10% foetal calf serum, 1% nonessential amino acids, 1% L-glutamine and 1% penicillin and streptomycin. The media was replaced every 48 h, with 0.1 ml on the apical side and 0.6 ml on the basolateral side. Cells with a passage number of 55 were used in experiments. The integrity of the monolayers was monitored by the transepithelial electrical resistance (TEER) and mannitol permeability.

Apparent permeability

At 30 days after seeding, the cells were washed and equilibrated in Hanks' balanced salt solution (HBSS) at 37°C on apical and basolateral sides. The cells were placed in new wells containing 0.6 ml of HBSS. In all, $200\,\mu\text{M}$ of test compound was added to the apical side and the inserts transferred to new wells every 30 min over 3 h. Concentrations of test compounds in the basolateral solution were determined by liquid chromatography–mass spectrometry (LC–MS). The apparent permeability coefficient $P_{\rm app}$ (cm s⁻¹) was calculated as:

$$P_{\rm app} = (\Delta Q/\Delta t)/AC_0$$

where $\Delta Q/\Delta t$ is the permeability rate, A is the surface area of the monolayer and C_0 is the initial concentration of the peptide on the apical side. The mannitol permeability assay was performed using D-Mannitol-1-¹⁴C, (Sigma) as described previously (Artursson *et al.*, 2001).

Electrical measurements

TEER was measured at 37°C with a Millicell-electrical resistance system (ERS). The Caco-2 monolayers were incubated for 30 min, and the electrodes equilibrated for 15 min, in HBBS before TEER measurements 1 day and 30 min before, and immediately after, the experiment. The filter resistance without the cells $(4-5\,\Omega\,\text{cm}^2)$ was subtracted from TEER values.

LC/MS analysis

A Perkin-Elmer Sciex API 3000 combined with Shimadzu HPLC was used to detect and measure peptides. A volume of $10\,\mu l$ of HBBS/peptide sample was injected into the LC/MS. An Agilent C18 column (Zorbax $5\,\mu m$ SB-C18 $2.1\times50\,mm^2$) with C18 guard column and 1:10 splitter was used. Mobile phase A was 0.1% formic acid in H₂O; B was 90% acetonitrile with 0.1% formic acid. The solvent gradient was started with 0% B for $0.6\,min$, increased to 100% B at $1.6\,min$, retained for $1.9\,min$ and decreased to 0% B in $0.1\,min$ at a constant flow of $0.2\,ml\,min^{-1}$. Standards were prepared from 0.001 to $5\,\mu M$. Standard curves achieved $R^2 > 0.999$.

Nuclear magnetic resonance (NMR) spectroscopy

Peptides A2(D-R18), $A2(D-R18)-2C_{10}$ and $A2(D-R18)-C_{12}$ were dissolved in 10% D₂O/90% H₂O to a final concentration of ~2 mM at pH ~5.5. NMR spectroscopy and subsequent analysis were then performed as described previously (Casarotto *et al.*, 2000; 2001).

Isolation of SR vesicles

Skeletal SR was isolated from the back and leg muscles of New Zealand White rabbits, and heavy SR was collected from the 35-45% (w v⁻¹) interface of a discontinuous sucrose gradient, centrifuged and resuspended (Ahern *et al.*, 1994). Cardiac SR was prepared from sheep heart (Chamberlain & Fleischer, 1988; Laver *et al.*, 1995). Vesicles were frozen and stored either in liquid N₂ or at -70° C.

Ca²⁺ release

Extravesicular Ca2+ was monitored at 710 nm with the Ca2+ indicator, antipyrylazo III, using a Cary 3 spectrophotometer (Dulhunty et al., 1999). Identical release experiments were performed at 790 nm, to detect Ca²⁺-independent changes in optical density (OD), which would alter the Ca²⁺ release measurement. The cuvette solution was stirred continuously and temperature controlled at 25°C. A typical Ca²⁺-release experiment is shown in Figure 3. Skeletal SR (100 µg of protein) was added to the cuvette solution (final volume of 2 ml), containing (mM): KH_2PO_4 , 100 (pH = 7); $MgCl_2$, 4; Na₂ATP, 1; antipyrylazo III, 0.5). Ca²⁺, Mg²⁺-ATPase activity was suppressed with thapsigargin (200 nm; Sagara & Inesi, 1991). The same solutions were used with cardiac SR, except that an ATP-regenerating system - phospho(enol)pyruvate (5 mM) and pyruvate kinase (25 μ g ml⁻¹) – was added. OD calibration curves were obtained daily. The same conditions were used for Ca2+ accumulation experiments, except that the concentration of antipyrylazo III was 0.2 mM. Control experiments, performed either without SR vesicles or when the SR vesicles were blocked with thapsigargin, ruthenium red and ionophore, showed that addition of the -2C10 conjugated peptides elicited a step change in OD and then a slow increase. This artefactual change in OD was similar for all -2C10 conjugated peptides, and increased with peptide concentration from negligible levels at $\leq 1 \,\mu\text{M}$ peptide to values equivalent to Ca^{2+} release rates of $\sim 5\pm 3$ and $64 \pm 10 \,\mathrm{nmol\,mg^{-1}\,min^{-1}}$ at 5 and 30 $\mu\mathrm{M}$ peptide, respectively. Measurements of Ca²⁺-release rate obtained in experiments

where **-2C10** conjugated peptide was added to Ca^{2+} -loaded vesicles were corrected for this artefact by subtracting the appropriate value. It was possible that this intrinsic optical effect was due to an isomer A2(D-R18)- $2C_{10}$. The peptide A2(D-R18) is made with optically pure L-amino acids and D-R18. The lipoamino acid (C_{10}) was a racemate (L- C_{10} and D- C_{10}), so that one C_{10} conjugation gave two diastereomers and the second coupling gave four diastereomers. These diastereomers were separated by HPLC and two major fractions obtained. Fraction 1 produced much less artefactual change in OD but retained its efficacy in activating Ca^{2+} release, while fraction 4 had less functional activity and produced a strong artefactual response.

Skinned fibre techniques

Experiments were performed at 23±2°C and chemicals obtained from Sigma, except where noted. Mechanically skinned segments of single extensor digitorum longus (EDL) muscle fibres from the rat were connected to a force transducer (AME801, SensoNor, Horten, Norway), and bathed in a standard high [K+] solution mimicking the normal environment (Lamb & Stephenson, 1994) and containing (mm): K⁺, 126; Na⁺, 37; 1,6-diaminohexane-N,N,N',N'-tetraacetic acid (HDTA) (Fluka, Buchs, Switzerland), 50; total ATP, 8.0; total creatine phosphate, 10.0; total magnesium, 8.5; HEPES, 90; NaN_3 , 1.0; total EGTA, 0.05, with pCa (i.e. $-log_{10}[Ca^{2+}]$) 7.1 and pH 7.10 ± 0.01 (free [Mg²⁺], 1 mM; osmolality, $295 \pm 5 \,\mathrm{mosmol\,kg^{-1}}$). The SR was fully emptied of $\mathrm{Ca^{2+}}$ by pre-equilibrating the fibre in standard solution with 0.5 mM EGTA (pCa>8) for 10s and then exposing it to the Full Release Solution (similar solution with 30 mM caffeine, $0.05\,\mathrm{mM}$ free Mg²⁺ and $0.5\,\mathrm{mM}$ EGTA, pCa>8). The time integral (area) of the force response upon emptying the SR with the Full Release Solution indicated the amount of Ca²⁺ present in the SR (Lamb et al., 2001).

To test the sensitivity to 8 mM caffeine (e.g. Figure 9), the SR was loaded with Ca²⁺ to a set level (close to that in the fibre endogenously) by exposing the fibre for a set period (usually 15s) to a solution buffered at pCa 6.7 with 1.0 mM total EGTA (Lamb *et al.*, 2001). The fibre was then equilibrated in standard weakly Ca²⁺-buffered solution (1 mM Mg²⁺, 0.05 mM EGTA, pCa 7.1) for 20 s, with or without peptide, and exposed to a similar solution with 8 mM caffeine for 15s, before fully depleting the SR of its remaining Ca²⁺ with the Full Release Solution. Maximum Ca²⁺-activated force in each fibre was determined using a 50 mM Ca-EGTA (pCa 4.7) ('Max') solution.

To examine the effect of a peptide on Ca²⁺ accumulation (Figure 10), the fibre was subjected to repeated load-deplete cycles in which the SR was loaded for a set period with peptide present or absent, and then emptied of all Ca²⁺ with the standard Full Release Solution (without peptide) to ascertain the total Ca²⁺ accumulated. When loading in standard 1 mM Mg²⁺, the load solution was at pCa 6.7 (1 mM total EGTA), but when loading at 10 mM Mg²⁺ the free [Ca²⁺] was increased to pCa 6.4. Before loading, the fibre was preequilibrated for 1 min in a solution with 0.5 mM EGTA (pCa>8) with or without peptide. To examine the Ca²⁺ sensitivity of the contractile apparatus, a fibre was exposed to matched sequences of solutions, both with and without the peptide, in which the [Ca²⁺] was heavily Ca²⁺-buffered

(50 mM total EGTA replacing HDTA) at progressively higher levels (pCa 6.7–4.7) (Lamb & Stephenson, 1994). The steady-state force produced at each pCa was expressed relative to the respective maximum, and the force–pCa relationship was best fit with a Hill curve to give the pCa producing half-maximal force (pCa₅₀) and the Hill coefficient.

Statistics

Average data are given as mean \pm s.e.m. for $n \ge 4$, or mean \pm s.d. for n = 3. The significance of the difference between control and test values was tested using a Student's t-test.

Results

Membrane permeability of the peptides

The peptide sequences are shown in Table 1. The novel A2(D-R18) contained two modifications of the native A1 sequence, which increase structural stability. Ser17 was mutated to an alanine (Casarotto *et al.*, 2000) and the L isomer of Arg18 was replaced by the D isomer (Green *et al.*, 2003). The apparent permeabilities of A2(D-R18) and $A2(D-R18)-2C_{10}$ were measured and compared with a single tail of the same chain length, $A2(D-R18)-C_{10}$. The amount of peptide transported across the Caco-2 cell monolayer increased with lipoamino acid conjugation (Figure 1a). The apparent permeabilities were $4.17\pm0.5E-08\,\mathrm{cm\,s^{-1}}$ for $A2(D-R18)-2C_{10}$ and $91.5\pm6.1E-08\,\mathrm{cm\,s^{-1}}$ for the single $-C_{10}$ conjugate.

The relatively small permeability for $A2(D-R18)-2C_{10}$ was surprising, but is likely to reflect lower than expected concentrations in the donor compartment because the more hydrophobic peptide was adsorbed onto the surface of the sample well (Artursson & Karlsson, 1991). In contrast, since $A2(D-R18)-C_{10}$ would have no significant plastic adsorption, its apparent permeability is a more accurate reflection of the true permeability of the tailed peptides. TEER values (Figure 1b) and the mannitol permeability assay indicated that the cells remained in good condition. TEER remained $\geq 30\%$ of control in all cases. Toxicity is indicated by a fall to <10% of control (Ingels et al., 2002). A smaller fall in TEER over the experimental period with both the permeable and impermeable compounds was not indicative of toxicity. Mannitol permeability, measured in parallel with compound permeability, remained between 2.4E-07 and 2.9E-07 cm s⁻¹ and well within the normal range of 1.8E-07 to 1.17E-06 (Artursson et al., 1996). Mannitol is restricted to the paracellular pathway across the tight junctions and its permeability indicates the tightness of the junction. The permeability will significantly increase if cells are damaged, as mannitol diffuses between the donor and the receiver compartments.

Since lipophylic compounds are excluded from paracellular pathways, it is well recognised that their permeability reflects their movement across the cell membranes, provided the cells are not damaged (Wong *et al.*, 2002). Since TEER and mannitol permeability indicated that the cells in this study remained in good condition, the increase in permeability

Table 1 Effects of various A-series peptides on the initial rate of CICR from cardiac SR vesicles

	Relative release rate							
Peptide	<i>10</i> μM	<i>30</i> μM						
AI Thr Ser Ala Gln Lys Ala Lys Ala Glu Glu Arg Lys ArgArg Lys Met Ser Arg Gly Leu								
	2.15 + 0.23*	1.83 + 0.15*						
	(4)	(9)						
A2 Thr Ser Ala Gln Lys Ala Lys Ala Glu Glu Arg Lys Arg Arg Lys Met Ala Arg Gly Leu								
_,,.	2.03 + 0.03*	2.61 + 0.34*						
	(5)	(5)						

A2(D-R18) Thr Ser Ala Gln Lys Ala Lys Ala Glu Glu Arg Lys Arg Arg Lys Met Ala Arg Gly Leu

	$3.02 \pm 0.50*$ (6)	$2.77 \pm 0.39* $ (9)		
A2(D-R18)-C12	1.58 ± 0.15 (3)	0.77 ± 0.17 (3)		
A2(D-R18)-2C10	$2.45 \pm 0.23*$ (3)	4.51±1.12* (4)		

The rate of CICR in the presence of 10 or $30 \,\mu\text{M}$ peptide is expressed relative to that with no added peptide (control). Number of experiments is given in brackets. The sequence for each of the peptides is given. Residues altered from the native AI sequence are highlighted. The Ser to Ala mutation in A2, A2(D-R18) is shown in bold type, and L-Arg to D-Arg replacement in A2(D-R18) is shown in bold italics. -C12 indicates that the peptide conjugated to a single -C12 tail, while -2C10 indicates conjugation to two -C10 tails. Asterisks indicate that the data are significantly different from control (i.e. 1.0).

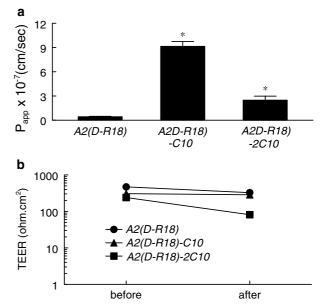


Figure 1 Conjugation of two -C10 lipid tails to A2(D-R18) allows the peptide to cross Caco-2 cell membranes. (a) The apparent permeability of Caco-2 cell monolayers for peptides A2(D-R18), A2(D-R18)-C10 and A2(D-R18)-2C10. Each bar show the mean \pm s.d. for $P_{\rm app}$ obtained from three experiments. The asterisks indicate a significant difference from data obtained with A2(D-R18). (b) Average TEER measurements obtained from the monolayer before and after permeability measurements using A2(D-R18) (n=3), A2(D-R18)-C10 (n=4) and A2(D-R18)-2C10 (n=4).

of the -C10 conjugates is indicative of increased membrane permeability.

Structure of A2(D-R18) lipid-conjugated peptides

The complete NMR assignments were determined using standard two-dimensional methods with TOSCY experiments (Bax & Davis, 1985) to identify spin types and NOESY experiments (Kumar *et al.*, 1980) for specific sequence assignments. The extent of α -helical structure was assessed from NOE cross-peaks, which indicate that two proton atoms are separated by \sim <5 Å. Adjacent amide backbone protons in an α -helix are separated by \sim <2.8 Å and typical NOE patterns reflecting α -helical structure are shown in Figure 2.

The spectrum for A2(D-R18) (Figure 2a) indicates a helix extending throughout the entire peptide from residue 1 to 20, with a helical structure comparable to that in A1(D-R18) (Green *et al.*, 2003). Fewer NOESY cross-peaks were present in the spectrum for the active fraction 1 of $A2(D-R18)-2C_{10}$ (Figure 2b). These cross-peaks, as well as the α -proton chemical shift, indicate a helical structure between residues 2 and 15 (Casarotto *et al.*, 2001). Thus, the structures of the two residues closest to the lipophilic tail attachment were altered, but the key basic residues required for RyR activation (11–15) remained helical. Differences in the chemical shift patterns for



Figure 2 Conjugation of two -C10 lipid tails to A2(D-R18) does not significantly alter the helical structure of the peptide in the region of critical residues 11–15. Amide-amide regions of the NOESY spectra of peptides A2(D-R18) (a), and the active isomer of A2(D-R18)-2C10 in HPLC fraction 1 (F1) (b). Connected i+i-1 NOEs are shown for residues 11-15 in (a, b). These residues are the RKRRK sequence, whose helical structure is required for optimal RyR activation. The spectra for both peptides indicate that they contain a substantial helical structure that includes residues 11-15.

A2(D-R18) and $A2(D-R18)-2C_{10}$ are due to environmental changes caused by the attachment of the lipoamino acid tail to the N-terminus.

The spectrum for the less active fraction 4 of A2(D-R18)- $2C_{10}$ (not shown) had the same number of NOE cross-peaks as fraction 1, but interestingly residues 11–15 were not fully contained within the helix. The loss of helical structure of residues 11–15 is (a) consistent with the low activity of fraction 4 (see Methods and Results) and (b) showed that isomerisation at the junction between the peptide and the lipid could cause small changes in peptide structure away from the conjugation point.

In contrast to the peptides A2(D-R18) and Fraction 1 of A2(D-R18)-2C10, A2(D-R18)-C12 displayed an NOE crosspeak pattern indicative of a partial helical structure in the critical 11–15 amino-acid region (not shown). This may explain the reduced function of this peptide (Table 1), and is consistent with our hypothesis that this stretch of basic residues must be structurally ordered in a helical manner for optimal activation.

Lipoamino acid conjugation enhances the ability of peptides to release Ca^{2+} from SR

 Ca^{2+} release from skeletal SR It was shown previously that mutating Ser 17 in the A1 peptide to an alanine (A2 peptide) increased its efficacy at inducing Ca2+ release from thapsigargin-blocked, skeletal SR (Casarotto et al., 2000). Furthermore, replacing the L isomer of Arg18 in A1 by the D isomer, to give A1(D-R18), also increased the efficacy (Green et al., 2003) (e.g. see Figure 3). We show here that a peptide with both changes, A2(D-R18), is even more effective than the peptides with either change alone (Figure 4). Importantly, when A2(D-R18) was double conjugated with $-C_{10}$, to form $A2(D-R18)-2C_{10}$, it became considerably more effective still, with the AC_{50} for resting Ca^{2+} release decreasing ~ 5 -fold to $\sim 3 \,\mu \text{M}$ and the maximum release rate more than doubling (Figure 4a). Furthermore, whereas A2(D-R18) did not evoke net release of Ca²⁺ in the absence of thapsigargin (Figure 3f), $A2(D-R18)-2C_{10}$ did so (Figure 3g).

Fractionation of $A2(D-R18)-2C_{10}$ yielded (a) an active isomer (fraction 1), which induced Ca^{2+} release with little intrinsic absorbance change (see Methods) and (b) a less active fraction 4, which had strong intrinsic effects. Resting Ca^{2+} release was similar for the racemic mixture and the active isomer at $\leq 20 \,\mu\text{M}$ (Figure 4a). The peptides also enhanced CICR and caffeine-induced Ca^{2+} release from the skeletal SR (Figure 4b). $A2(D-R18)-2C_{10}$ was more active than A2(D-R18) and there was a further increase in activity with fraction 1.

 Ca^{2+} release from cardiac SR Both conjugated and unconjugated peptides were active on cardiac SR, but their effects were small and in marked contrast to the large effect on skeletal SR. The unconjugated A2(D-R18) at 30 μ M had little, if any, effect on the rate of release from the thapsigargin-treated cardiac vesicles (Figure 5a). Interestingly, double -C₁₀ conjugation of the peptide greatly increased its ability to induce resting Ca²⁺ release, with fraction 1 of A2(D-R18)- $2C_{10}$ apparently being more effective than the racemic mixture (Figure 5a). In contrast, similar lipoprotein conjugation of luteinising hormone-releasing hormone (LHRH), another small peptide with an unrelated sequence

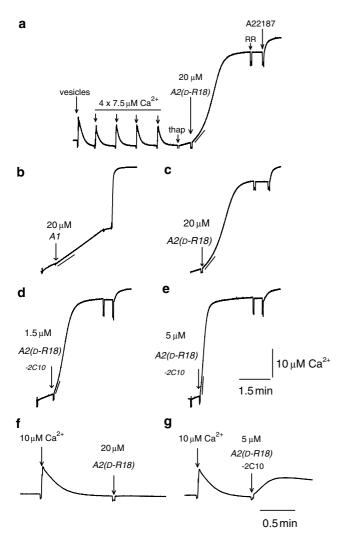


Figure 3 Conjugation of two -C10 lipid tails to A2(D-R18) enhances its ability to release Ca²⁺ from skeletal SR vesicles. (a) A full Ca²⁺ release experiment with addition of SR vesicles (first arrow), four additions of 7.5 μM Ca²⁺ with subsequent Ca²⁺ uptake into the SR (four short arrows). Thapsigargin addition to block the Ca²⁺, Mg²⁺ ATPase (sixth arrow), followed by 20 μM A2(D-R18) (seventh arrow), ruthenium red (RR, eighth arrow) and the Ca²⁺ ionophore (A22187, ninth arrow). Release with 20 μM A1 (D-R18) in (c) and 1.5 and 5.0 μM A2(D-R18)-2C10 in (d, e), respectively. The line at the start of the Ca²⁺ release indicates the initial rate of release. Effects of the peptides in the absence of thapsigargin are shown in (f) (20 μM A2(D-R18)) and (g) (5 μM A2(D-R18)-2C10).

GHWSYTGLRPG-NH2, caused no increase in resting Ca^{2+} release (Figure 5a). The AI and A2 peptides had a mild potentiating effect on CICR from cardiac SR vesicles and the effect of A2(D-R18) was similar (Table 1). In accord with the findings on resting Ca^{2+} release, double -C10 conjugation of A2(D-R18) enhanced its potentiating effect on CICR, with fraction 1 being even more efficacious with an AC_{50} of $\sim 1 \, \mu M$ (Figure 5b). Interestingly, single C_{12} conjugation of A2(D-R18) evidently interfered with the ability of the peptide to enhance CICR (Table 1).

In control experiments, Ca²⁺ release induced by the peptides was shown to depend on RyR channels and thapsigargin shown to block the Ca²⁺ ATPase (Figure 6).

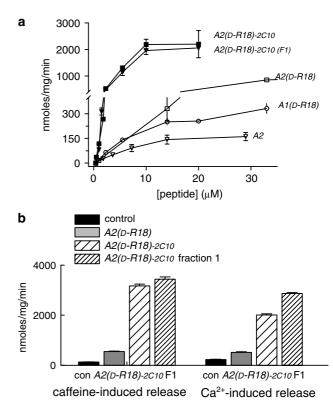
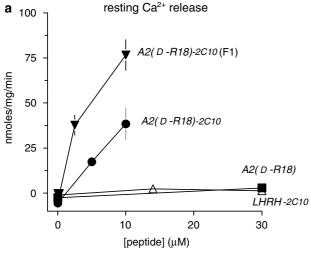
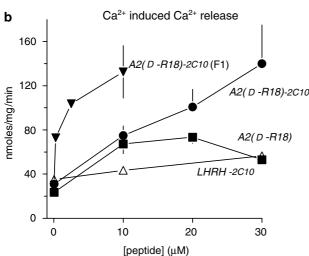




Figure 4 A2(D-R18)-2C10 enhances resting Ca²⁺ release, caffeineinduced Ca2+ release and Ca2+-induced Ca2+ release from isolated skeletal SR. Average data are shown for rates of resting Ca²⁺ release (a) and caffeine-induced Ca²⁺ release or Ca²⁺-induced Ca²⁺ release in (b). Rates of release are given in nmol mg⁻¹ min⁻¹. In (a), the vertical axis is split to display the rates of release with peptides A2 (n = 10), A1(D-R18) (n = 4-6) and A2(D-R18) (n = 4-6), as well as the greater rates of release with the racemic (unfractionated) A2(D-R18)-2C10 (n = 7-8) and the active isomer in fraction 1 (F1) of A2(D-R18)-2C10 (n = 4-6). In (b), average data for 0.76 mM caffeine-induced Ca2+ release (left) or 10 μ M Ca2+-induced Ca2release (right) under control conditions (control, n=4) and with $5 \,\mu\text{M} \, A2(\bar{D}-R18) \, (n=4)$, the racemic $A2(\bar{D}-R18)-2C10 \, (n=4)$ and fraction 1 (F1) of A2(D-R18)-2C10 (n=4). Note that the low [caffeine] was used to obtain a slope that was low enough to see a clear effect of the peptide.

Ruthenium red blocked CICR (Figure 6a and b) and Ca^{2+} release induced with 1 μ M A2(D-R18)-2C10 (Figure 6c and d). [Ca²⁺] did not fall after adding ruthenium red because Ca²⁺ pump activity was blocked by thapsigargin. A small residual release in ruthenium red was blocked by 10 mM Mg^{2+} (Figure 6f; 10 mM Mg^{2+} is a strong RyR antagonist – see skinned fibre results below). Similarly, Ca²⁺ release induced by $5 \,\mu$ M A2(D-R18)-2C10 was fully blocked by ruthenium red (Figure 6e), with the OD measurement showing only the small artefactual change caused by the conjugated peptides (see Methods).

Lipoamino acid-conjugated peptides slow the rate of SR Ca^{2+} uptake Lipoamino acid conjugation exacerbated an effect of the peptides on the Ca^{2+} pump. In skeletal SR, Ca^{2+} accumulation was measured after adding $50 \,\mu\text{M}$ Ca^{2+} to the cuvette (Figure 7a). The decline in $[Ca^{2+}]$ (slope A, Figure 7a) reflected the net Ca^{2+} flux (uptake by the pump minus the efflux through the RyR). $A2(D-R18)-2C_{10}$ was more effective

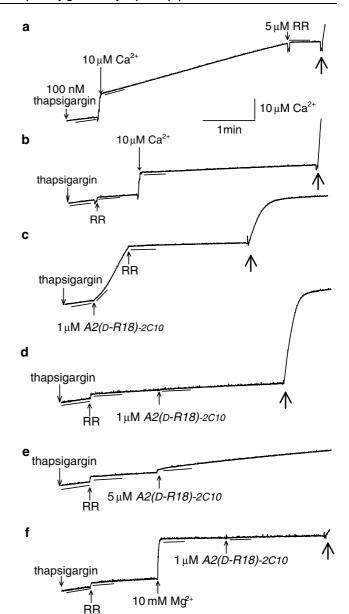


Figure 5 A2(D-R18)-2C10 enhances resting Ca²⁺ release and Ca²⁺-induced Ca²⁺ release from isolated cardiac SR. Average rates of resting Ca²⁺ release (RCR) are shown in (a) and Ca²⁺-induced Ca²⁺ release (CICR) in (b). In (a, b), data are shown for A2(D-R18) (RCR -n=2; CICR -n=6-9), the racemic $A2(D-R18)-2C_{10}$ (RCR -n=4; CICR -n=3) and fraction 1 (F1) of $A2(D-R18)-2C_{10}$ (RCR -n=5-7; CICR -n=3-4) and for a control peptide (*LHRH*) with two -C10 tails (*LHRH-2C*₁₀) (n=2 each for RCR and CICR). Note, in panel b that there is some CICR even in the absence of any peptide.

than the unconjugated A2(D-R18) in reducing Ca²⁺ accumulation (Figure 7b) – consistent with their relative effects on Ca²⁺ efflux. After adding ruthenium red, accumulation (slopes B and C, Figure 7) reflected Ca²⁺ uptake alone and was reduced minimally by $25 \,\mu\text{M} \, A2(D-R18)$ (second column), and reduced further by $5-10 \,\mu\text{M} \, A2(D-R18)-2C_{10}$. Notably, the decrease in Ca²⁺ uptake rate with $5 \,\mu\text{M}$ of the $-2C_{10}$ conjugated peptide to 0.8-0.5 of control is in contrast to the 10,000-fold increase in resting Ca²⁺ release rate with the same peptide concentration (see Figure 4 above).

The protocol was altered with cardiac SR because the SR failed to accumulate $50 \,\mu\text{M}$ Ca²⁺, but coped with a smaller pulse of $7.5 \,\mu\text{M}$ Ca²⁺ (Figure 8a and b). The effect of ruthenium red was small (Figure 8), indicating that the leak through the RyR was only small, most likely due to (a) there being excess longitudinal SR (which lacks RyRs), since the

Figure 6 Control experiments showing that Ca^{2+} release is through the RyR and that the Ca^{2+} pump is blocked by thapsigargin. Records show Ca^{2+} release from skeletal SR. Vesicles were loaded with $4\times7.5\,\mu\text{M}$ Ca^{2+} (as in Figure 3a) and 100 nM thapsigargin added as indicated. In (a), release in response to $10\,\mu\text{M}$ Ca^{2+} was blocked by $5\,\mu\text{M}$ ruthenium red. In (b), $5\,\mu\text{M}$ ruthenium red added after $100\,\text{nM}$ thapsigargin reduced the Ca^{2+} leak and prevented the CICR response. In (c), release with $1\,\mu\text{M}\,A2(D\text{-}R18)$ - $2C_{10}$ was blocked by $5\,\mu\text{M}$ ruthenium red. In (d, e) ruthenium red added before 1 or $5\,\mu\text{M}$ peptide, respectively, prevented release. In (f), $10\,\text{mM}\,\text{Mg}^{2+}$ (added after ruthenium red block) caused a step increase in optical density, but abolished residual release and the peptide-induced response. The maintained high $[Ca^{2+}]$ after adding ruthenium red in (a-c) indicates that the Ca^{2+} , Mg^{2+} ATPase was blocked by thapsigargin. The heavy arrow towards the end of records in (a-d, f) indicates the time of addition of Ca^{2+} ionophore A23187 (3 $\mu\text{g}\,\text{m}\,\text{I}^{-1}$) to release the Ca^{2+} remaining in the TC vesicles.

cardiac preparation was not fractionated by sucrose gradient (see Methods) and (b) low loading with addition of only 7.5 μ M Ca²⁺. Thus, Ca²⁺ accumulation was dominated by Ca²⁺ uptake, even in the absence of ruthenium red. *A2(D-R18)* did not alter Ca²⁺ accumulation, nor did unconjugated *A1* nor *A2*

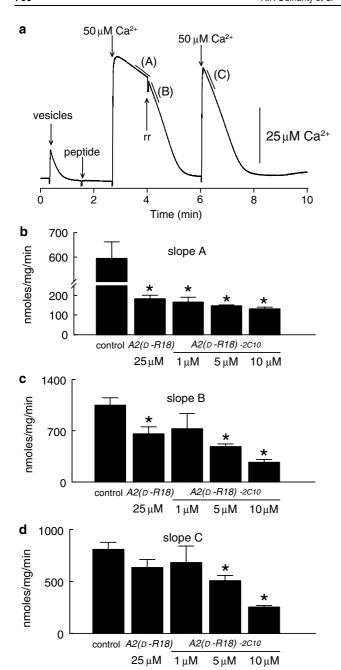


Figure 7 A2(D-R18)-2C10 reduces Ca²⁺ accumulation by skeletal SR by increasing Ca²⁺ efflux through the RyR and by reducing Ca²⁺ uptake by the Ca²⁺, Mg²⁺ ATPase. (a) A record showing skeletal SR vesicles added to the cuvette (first arrow), followed by either H₂O (control) or peptide (second arrow). Ca²⁺ accumulation measured $\sim 30 \text{ s}$ after adding $50 \,\mu\text{M}$ Ca²⁺ (third arrow) (line A), and then after addition of ruthenium red (fourth arrow) to block the RyR (line B). When extravesicular Ca²⁺ was reduced to resting levels, a second bolus 50 μ M Ca²⁺ was added (fifth arrow) and Ca² uptake measured (line C). The rate of accumulation after addition of ruthenium red (slopes B and C) reflected Ca²⁺ uptake by the Ca² Mg²⁺ ATPase. Average data corresponding to slopes A, B and C are given in (b-d), respectively. The first bin in each graph shows control data (with the volume of H_2O normally added with $25 \,\mu M$ peptide). The second bin shows data with 25 μ M A2(D-R18), while the third, fourth and fifth bins show data with 1, 5 and $10 \,\mu M$ A2(D-R18)-2C10, respectively. Each bin gives mean \pm s.d. for three observations. Asterisks indicate a significant difference from control.

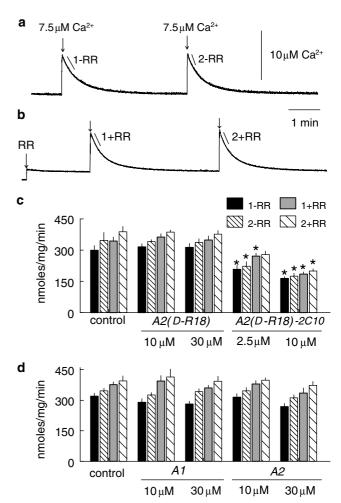


Figure 8 A2(D-R18)-2C10 inhibits Ca2+ uptake by the cardiac Ca²⁺,Mg²⁺ ATPase. (a, b) Records of a pair of experiments with cardiac SR vesicles. Either water (control) or peptide was added (not shown). Ca2+ accumulation was measured after each of two additions of 7.5 μ M Ca²⁺ (lines 1 and 2, respectively) – (a) in the absence of ruthenium red (-RR); (b) ruthenium red added before Ca^{2+} (+RR). (c, d) Average data under control conditions (with the volume of H_2O added with 30 μ M peptide) and in the presence of the peptides. Four bins are shown under each condition: slope 1-RR (1-RR), slope 2-RR (2-RR), slope 1+RR (1+RR) and slope 2 + RR (2 + RR). The legend in (c) also applies to (d). The influence of RyR activity on uptake, that is, uptake in the presence and absence of RyR activity can be assessed by comparing the black (1-RR) with the grey filled bins (1+RR) or the narrow (2-RR)with the wide stippled bins (2 + RR). (c) A2(D-R18) at 10 and $30 \,\mu\text{M}$ (n = 5), and Fraction 1 of A2(D-R18)-2C10 at 2.5 and $10 \,\mu\text{M}$ (n = 5-7). (d) A1 and A2 at 10 and 30 μ M (n = 5 for each).

(Figure 8c and d). In contrast, the racemic $A2(D-R18)-2C_{10}$ at 2.5 μ M slowed the decline in [Ca²⁺] under all conditions to ~ 0.8 of control. These effects were consistent with (a) a minimal influence of Ca²⁺ efflux on the measurements and (b) inhibition of the pump by $A2(D-R18)-2C_{10}$.

Effects of lipoamino acid-conjugated peptides on skinned skeletal muscle fibres

The unconjugated A2(D-R18) potentiated caffeine-induced Ca^{2+} release in skinned EDL fibres. The peptide was more effective than A1(D-R18) (Green *et al.*, 2003), with $0.6 \,\mu\text{M}$ peptide increasing both the amplitude and rate of Ca^{2+} release

Table 2 Effect of peptides on the force response to 8 mM caffeine in rat skinned EDL fibres

		Peak response to 8 mM caffeine (% of maximum Ca ²⁺ -activated force)			Rate of force rise to 8 mM caffeine (% Ca ²⁺ -activated maximum force per sec)		
	Control	Test 1	Test 2	Control	Test 1	Test 2	
$A2(D-R18)$ (0.6 μ M) ($n = 7$) $A2(D-R18)$ (3 μ M) ($n = 4$)	19 ± 5.6 31 ± 9.6	$51 \pm 5.6*$ $79 \pm 10*$	$58 \pm 10.2*$ $77 \pm 5.4*$	6 ± 1.8 9 ± 3.6	$25 \pm 6.5 * $ $74 \pm 20 *$	$32 \pm 7.0*$ $70 \pm 15*$	
$A2(D-R18)-2C10 \ (0.6 \ \mu\text{M}) \ (n=5)$ $A2(D-R18)-2C10 \ (3 \ \mu\text{M}) \ (n=3)$ $A2(D-R18)-2C10 \ (10 \ \mu\text{M}) \ (n=3)$	22 ± 12 35 ± 9.3 15 ± 15	$37 \pm 12*$ 59 ± 21 $74 \pm 12.3*$	$52\pm9.1*$ 44 ± 20 $84\pm7.5*$	12 ± 8.0 12 ± 3.2 2 ± 1.6	16 ± 6.2 29 ± 13.7 $23 \pm 7.5*$	21 ± 6.6 23 ± 10.2 $34 \pm 8.5*$	

In each skinned fibre, the force response to 8 mM caffeine was measured twice in the absence of peptide (and averaged) and then twice in the presence of the peptide (tests 1 and 2) (see Figure 9), and expressed as a percentage of the maximum Ca²⁺-activated force in that fibre. The table shows the mean \pm s.e.m. data obtained in the indicated number of fibres (n). Note that, although the size of control response to 8 mM caffeine could differ somewhat between fibres, it was highly reproducible within a given fibre (e.g. Figure 9), and that paired control and test data were always obtained in each fibre.

^{*}Significant difference (P<0.05) between control and test response (Student's one-tailed paired t-test).

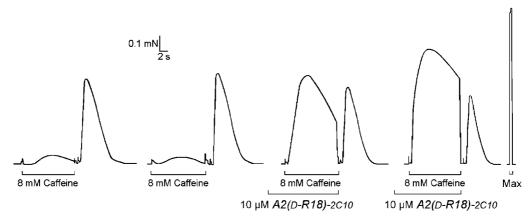


Figure 9 A2(D-R18)-2C10 potentiates caffeine-induced Ca²⁺ release in a skinned EDL fibre. A skinned EDL fibre was subjected to repeated cycles in which the SR was emptied of all Ca²⁺ and then reloaded to a set level and the responsiveness to 8 mM caffeine tested. The response to 8 mM caffeine was greatly potentiated by $10 \,\mu\text{M}$ A2(D-R18)-2C10. After testing the response to 8 mM caffeine, the SR was depleted of its remaining Ca²⁺ by exposure to the Full Release Solution, with the area of the resulting force response being indicative of the amount of Ca2+ that was in the SR. When 8 mM caffeine elicited a bigger force response, and hence more Ca²⁺ release, the amount of Ca²⁺ left in the SR decreased. Note that the 'area' of the force response to 8 mM caffeine cannot be directly compared to that when fully releasing the Ca²⁺ because of the very different levels of Ca²⁺ buffering in the two cases. The peptide was added 20 s before testing the responsiveness to 8 mM caffeine. 'Max' indicates maximum Ca²⁺ -activated force for the fibre.

(Table 2). This effect of the peptide was substantially reversed within 2 min after washout of the peptide (not shown).

 $A2(D-R18)-2C_{10}$ also potentiated caffeine-induced responses (Figure 9), with a significant increase in amplitude at $0.6\,\mu\text{M}$ and a significant effect on rate at $10\,\mu\text{M}$ (Table 2). In contrast to Ca²⁺ release from isolated SR (Figures 3 and 4), conjugation seemingly reduced the relative effectiveness of the peptide in skinned fibres. However, this was almost certainly because the strong partitioning of the hydrophobic peptide into the membranes meant that the 20 s period allowed for full equilibration with the RyR was insufficient. (The 20s equilibration period could not be increased because the peptide was likely to cause too great a loss of Ca²⁺ from the SR before the exposure to 8 mM caffeine.) Strong partitioning into the membrane was further indicated by the fact that the effect of $A2(D-R18)-2C_{10}$ on the caffeine response was only partially reversed after > 10 min washout. Thus, the observed effects of $A2(D-R18)-2C_{10}$ on caffeine-induced Ca²⁺ release almost certainly underestimate its efficacy.

The enhancement of caffeine responses by $A2(D-R18)-2C_{10}$ was evidently due to an effect on Ca²⁺ release from the SR,

not on the Ca²⁺ sensitivity of the contractile apparatus. Firstly, the force response when emptying the SR of its remaining Ca²⁺ after exposure to 8 mM caffeine was smaller when peptide had been present in the 8 mM caffeine solution (Figure 9). Such a reduced response indicates that the presence of the peptide in the 8 mM caffeine solution caused greater depletion of Ca²⁺ in the SR. Secondly, direct examination of the contractile apparatus showed that $A2(D-R18)-2C_{10}$ (at $3 \mu M$) had no effect on maximum force or Ca²⁺ sensitivity (pCa₅₀ and Hill coefficient: 5.96 ± 0.01 and 4.4 ± 0.6 , and 5.96 ± 0.01 and 4.2 ± 0.7 , with and without peptide, respectively; P > 0.05, Student's paired t-test, n = 4).

A2(D-R18)-2C₁₀ substantially inhibited net Ca²⁺ accumulation by the SR (Figure 10a). In these experiments, where the SR was initially empty of Ca²⁺, it was possible to equilibrate the fibres with peptide for 1 min before testing its effect on Ca2+ accumulation. The effect of the conjugated peptide on Ca²⁺ accumulation became greater with repetition (stabilising after ~ 3 repetitions), consistent with a slow time-course for full equilibration of the peptide within the fibre. A2(D-R18)- $2C_{10}$ (10 μ M) reduced the net uptake rate to 18 \pm 4% of control

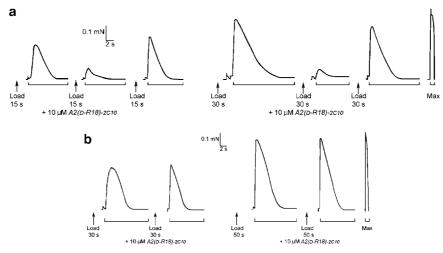


Figure 10 Peptide A2(D-R18)-2C10 reduces net Ca²⁺ uptake by the SR in a skinned EDL fibre when present in the loading solution. In (a), force responses were elicited when emptying the SR with the Full Release Solution after loading for the indicated time, under the standard conditions with 1 mM Mg²⁺ (pCa 6.7, 1 mM total EGTA), with or without peptide. The area of the force response is indicative of the net amount of Ca²⁺ loaded into the SR. The peptide reduced net Ca²⁺ uptake and the effect became greater on successive repetitions (stabilising after ~3 repetitions) and was reversed only slowly by washout. The records shown are for the third repetition after loading in the presence of the peptide, and the following control records are for the fourth load/release cycle after washout of the peptide. In the fibre shown in (b), A2(D-R18)-2C10 caused only a small reduction in net SR Ca²⁺ uptake when there was 10 mM free Mg²⁺ in the loading solution. The reduced effect of the peptide was due to the high [Mg²⁺] inhibiting activation of the Ca²⁺ release channels and preventing the peptide from increasing Ca²⁺ efflux from the SR during uptake. These findings indicate that most of the reduction in net Ca²⁺ uptake by the peptide in (a) is due to increased Ca²⁺ efflux, not reduced uptake. (Note that the rate of Ca²⁺ uptake is reduced in 10 mM Mg²⁺ but this effect was minimised by raising the [Ca²⁺] in the load solution from pCa 6.7 to 6.4, so that the net Ca²⁺ loaded into the SR is comparable with that in (a)). In (a, b) Ca²⁺ release was evoked under the standard conditions with 1 mM Mg²⁺.

(on the third repetition in peptide) (n=6 fibres). The effect was slowly reversed by washout (taking $\sim 10\,\mathrm{min}$ for near full recovery, legend to Figure 10). The effect of the peptide in reducing net Ca²⁺ accumulation was consistent with it enhancing Ca²⁺ efflux through the RyR during the Ca²⁺-loading period. The greater effect with successive repetitions and slow washout are consistent with retarded equilibration of the peptide at its active site.

The possibility that the conjugated peptide also slowed Ca^{2+} uptake by the Ca^{2+} pump was examined by blocking Ca^{2+} efflux with 10 mM free Mg^{2+} – a potent inhibitor of the RyR (Lamb & Stephenson, 1994). Under such circumstances, $10 \, \mu M$ of $A2(D-R18)-2C_{10}$ reduced net uptake to only $71\pm8\%$ of control (n=6 fibres, P<0.05) (e.g. Figure 10b). The fact that uptake still declined when the RyR was disabled indicates that the peptide directly inhibits the SR Ca^{2+} pump. Nevertheless, it is apparent that most of the reduction in net Ca^{2+} accumulation observed at normal [Mg^{2+}] (e.g. Figure 10a) was due to the peptide potentiating the Ca^{2+} efflux from the SR during Ca^{2+} loading. These results are in close accord with those found in the skeletal SR vesicles.

Discussion

We find that peptides, with sequences based on the A region of the skeletal muscle DHPR II–III loop, become permeable in a Caco-2 cell line assay following lipoamino acid conjugation. Importantly, the conjugation did not significantly alter the α -helical structure of residues that are critical for high-affinity activation of RyR Ca²⁺ channels, and did not interfere with the ability of the peptides to release Ca²⁺ from the SR. In fact,

the conjugation increased the efficacy of the peptides in inducing Ca²⁺ release from both skeletal and cardiac SR.

Permeability of lipoamino acid-conjugated peptides

As shown previously with other peptides (Wong et al., 2002), the lipoamino acid conjugation enhanced the ability of the poorly absorbed native peptides to cross the epithelial cell layer. In order for a compound to be well absorbed, it should have an apparent permeability in Caco-2 monolayers of $\sim 1 \times 10^{-6} \,\mathrm{cm}\,\mathrm{s}^{-1}$ (Artursson & Karlsson, 1991). Since **A2(D-R18)-C10** had a P_{app} value of 0.97×10^{-6} , it should be well absorbed in vivo. Passive transport pathways across the epithelium are through tight junctions and across the apical and basolateral cell membranes (Artursson et al., 2001; Wong et al., 2002). The poorly permeable hydrophilic A2(D-R18) probably diffused through tight junctions, which provide the usual route for water-soluble compounds. The enhanced permeability of the hydrophobic lipoamino acid conjugates suggested that they crossed the cell membranes. The low apparent permeability of the more hydrophobic A2(D-R18)- $2C_{10}$ (compared with $A2(D-R18)-C_{10}$), can be explained by a lower than expected [peptide] in the donor solution, due to lower solubility and tendency to adsorb onto the chamber wall. High adsorbance can reduce apparent permeability by at least an order of magnitude (Artursson & Karlsson, 1991).

Structure of the conjugated peptides

The ability of the A peptides to stimulate Ca^{2+} release through the RyR depends on the presence of a stretch of positively charged amino-acid residues along one surface of the α -helical

peptide (Casarotto et al., 2000; 2001; Green et al., 2003). The profile of the NOESY spectra provides sufficient information to assess the integrity of secondary structure without performing a full structural analysis. The NOE cross-peak pattern in the amide region showed that the helical nature of the peptides was essentially retained despite the modification of the N-terminus by the lipoamino acid attachment. In particular, it was shown that the involvement of a helix for residues 11-15 was still a requirement in order for these peptides to release Ca²⁺ from the SR. This point was clearly evident for the two fractions of $A2(D-R18)-2C_{10}$ where the stereochemistry related to the lipophilic attachment influenced the structure of the peptide portion and hence the functional response of the peptide. Thus, functional changes in the conjugated peptides can be attributed to the increased hydrophobicity of the peptide, rather than altered peptide structure.

RyR activation by lipoamino acid-conjugated peptides

The lipoamino acid conjugation of A2(D-R18) considerably enhanced its ability to release Ca^{2+} from isolated SR. Since the control $LHRH-2C_{10}$ peptide did not release Ca^{2+} or enhance CICR, the lipoamino acid tails *per se* did not contribute to Ca^{2+} release.

Different actions of the peptides on skeletal and cardiac SR

The effects of the A peptides on skeletal SR were significantly stronger than the effects on cardiac SR. The lower sensitivity of the cardiac preparation presumably reflects differences between the binding sites or in the environment of the binding site in different RyR isoforms. A further reflection of possible differences in the environment of the binding site is the fact that the active fraction 1 (F1) of $A2(D-R18)-2C_{10}$ was as effective as the racemic $A2(D-R18)-2C_{10}$ in releasing Ca^{2+} in the skeletal preparation, but was substantially more effective in the cardiac preparation (although its effect remained far less than that on skeletal SR).

Slow equilibration of lipoamino acid-conjugated peptides in skinned fibres

In contrast to the greater efficacy of the lipoamino acidconjugated peptides in releasing Ca^{2+} from isolated SR, $A2(D-R18)-C_{10}$ was less effective in enhancing caffeineinduced Ca^{2+} release in skinned fibres when equilibration times were brief ($\sim 20 \,\mathrm{s}$). However, when the preparation was successively exposed to $A2(D-R18)-C_{10}$ (with 1 min equilibration during each exposure), a progressively greater effect on Ca^{2+} accumulation was observed, which was attributed to enhanced Ca^{2+} efflux. This indicated that equilibration of the conjugated peptide at its active site was slower than accumulation of the unconjugated peptide. Slow equilibration is consistent with the hydrophobic peptide partitioning into the lipid of the t-tubule and SR membranes that surround the RyR and form two boundaries of the restricted space of the triad junction (Franzini-Armstrong, 1970), as seen in the skinned fibres with other lipid-permeable agents such as nifedipine (Posterino & Lamb, 1998). It is also evidence that the conjugated peptides readily permeate the cell membranes of muscle fibres.

Lipoamino acid conjugation of the A peptides reveals an action on the Ca²⁺ pump

A small and low-affinity effect of the conjugated A peptides on the Ca²⁺, Mg²⁺ ATPase was apparent. Since fast-twitch skeletal and cardiac SR contain different isoforms of SR, endoplasmic reticulum Ca²⁺ ATPase (SERCA), SERCA1 and SERCA2a, respectively (MacLennan *et al.*, 1997), the effect is not isoform specific. A small decline in Ca²⁺ uptake by skeletal SR exposed to the unconjugated A2(D-R18) suggested that the hydrophilic peptide may have restricted access to an inhibitory site located in a hydrophobic region of the protein.

Potential use for lipoamino acid-conjugated A peptides

Within a limited concentration range, $A2(D-R18)-2C_{10}$ is a specific activator of the skeletal RyR in SR vesicles and skinned fibres. $A2(D-R18)-2C_{10}$ at $2 \mu M$ produced an ~ 2000 fold increase in Ca2+ release from skeletal SR without affecting the Ca2+ pump. At higher concentrations where small effects on the cardiac RyR and on Ca2+ uptake by the Ca²⁺, Mg²⁺ ATPase were apparent, the activation of RyR1 was several orders of magnitude greater than the effects on RyR2 or the SERCA proteins. The peptide at $20 \,\mu\text{M}$ caused a 20,000-fold increase in Ca2+ release from skeletal SR, compared with only a four-fold reduction in Ca2+ uptake. The peptide enhanced caffeine-induced Ca2+ release in skinned fibres at $0.6 \,\mu\text{M}$, and at $10 \,\mu\text{M}$ increased caffeineinduced Ca^{2+} release ~ 6 -fold with only a 30% decline in pump activity. Therefore, $A2(D-R18)-2C_{10}$ is a membranepermeable peptide that selectively activates Ca2+ release from skeletal SR through RyR channels at concentrations $\leq 2 \mu M$.

In conclusion, the experiments show that lipoamino acid conjugation renders the A peptides membrane permeable, without significantly altering either the α -helical secondary structure of a critical region of the peptides or altering their ability to stimulate RyR activity. The present study constitutes proof of principal that lipoamino acid conjugation of A peptides is a potentially promising method for developing membrane-permeable specific stimulators of RyRs for use $in\ vivo$.

We are grateful to Joan Stivala for assistance with SR vesicle preparation and characterisation and Maria Cellini for help with the skinned fibre experiments. This work was supported by Australian NHMRC Project Grant #224237 and the National Heart Foundation of Australian (# G 01C 0296).

References

- AHERN, C.A., BHATTACHARYA, D., MORTENSON, L. & CORONADO, R. (2001). A component of excitation-contraction coupling triggered in the absence of the T671-L690 and L720-Q765 regions of the II-III loop of the dihydropyridine receptor alpha (1s) pore subunit. *Biophys. J.*, **81**, 3294–3307.
- AHERN, G.P., JUNANKAR, P.R. & DULHUNTY, A.F. (1994). Single channel activity of the ryanodine receptor calcium release channel is modulated by FK-506. *FEBS Lett.*, **352**, 369–374.
- ARTURSSON, P. & KARLSSON, J. (1991). Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. *Biochem. Biophys. Res. Commun.*, **175**, 880–885.
- ARTURSSON, P., KARLSSON, J., OCKLIND, G., SCHIPPER, N. & KARLSSON, J. (1996). Studying transport processes in absorptive epithelia. In: *Epithelial Cell Culture: A Practical Approach*, ed. Shaw, A.J. pp. 111–129. Oxford, England: IRL Press.
- ARTURSSON, P., PALM, K. & LUTHMAN, K. (2001). Caco-2 monolayers in experimental and theoretical predictions of drug transport. *Adv. Drug Deliv. Rev.*, **46**, 27–43.
- BAX, A. & DAVIS, D.G. (1985). MLEV-17 based two dimensional homonuclear magnetisation transfer spectroscopy. *J. Magn. Reson.*, **65.** 355–360.
- BLOCK, B.A., IMAGAWA, T., CAMPBELL, K.P. & FRANZINI-ARMSTRONG, C. (1988). Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle. J. Cell Biol., 107, 2587–2600.
- CASAROTTO, M.G., GREEN, D., PACE, S.M., CURTIS, S.M. & DULHUNTY, A.F. (2001). Structural determinants for activation or inhibition of ryanodine receptors by basic residues in the dihydropyridine receptor II–III loop. *Biophys. J.*, **80**, 2715–2726.
- CASAROTTO, M.G., GIBSON, F., PACE, S.M., CURTIS, S.M., MULCAIR, M. & DULHUNTY, A.F. (2000). A structural requirement for activation of skeletal ryanodine receptors by peptides of the dihydropyridine receptor II–III loop. J. Biol. Chem., 275, 11631–11637.
- CHAMBERLAIN, B.K. & FLEISCHER, S. (1988). Isolation of canine cardiac sarcoplasmic reticulum. *Methods Enzymol.*, **157**, 91–99.
- DULHUNTY, A.F., HAARMANN, C.S., GREEN, D., LAVER, D.R., BOARD, P.G. & CASAROTTO, M.G. (2002). Interactions between dihydropyridine receptors and ryanodine receptors in striated muscle. *Prog. Biophys. Mol. Biol.*, **79**, 45–75.
- DULHUNTY, A.F., LAVER, D.R., GALLANT, E.M., CASAROTTO, M.G., PACE, S.M. & CURTIS, S. (1999). Activation and inhibition of skeletal RyR channels by a part of the skeletal DHPR II–III loop: effects of DHPR Ser687 and FKBP12. *Biophys. J.*, 77, 189–203.
- EL-HAYEK, R., ANTONIU, B., WANG, J., HAMILTON, S.L. & IKEMOTO, N. (1995). Identification of calcium release-triggering and blocking regions of the II–III loop of the skeletal muscle dihydropyridine receptor. *J. Biol. Chem.*, **270**, 22116–22118.
- FRANZINI-ARMSTRONG, C. (1970). Studies of the triad. I. Structure of the junction in frog twitch fibers. *J. Cell Biol.*, **47**, 488–498.
- GIBBONS, W.A., HUGHES, R.A., SZETO, A., CHARALAMBOUS, M., AULABAUGH, A., PAOLO MASCAGNI, P. & TOTH, I. (1990). Lipidic peptides I. Synthesis resolution and structural elucidation of fatty amino acids and their homo- and hetero-oligomers. *Liebigs* Ann. Chem., 1175–1183.
- GREEN, D., PACE, S., CURTIS, S.M., SAKOWSKA, M., LAMB, G.D., DULHUNTY, A.F. & CASAROTTO, M.G. (2003). The threedimensional structural surface of two beta-sheet scorpion toxins mimics that of an alpha-helical dihydropyridine receptor segment. *Biochem. J.*, 370, 517–527.
- GURROLA, G.B., AREVALO, C., SREEKUMAR, R., LOKUTA, A.J., WALKER, J.W. & VALDIVIA, H.H. (1999). Activation of ryanodine receptors by imperatoxin A and a peptide segment of the II–III loop of the dihydropyridine receptor. *J. Biol. Chem.*, **274**, 7879–7886.
- INGELS, F., DEFERME, S., DESTEXHE, E., OTH, M., VAN DEN MOOTER, G. & AUGUSTIJNS, P. (2002). Simulated intestinal fluid as transport medium in the Caco-2 cell culture model. *Int. J. Pharm.*, **232**, 183–192.

- KUMAR, A., ERNST, R.R. & WUTHRICH, K. (1980). A twodimensional nuclear overhauser enhancement (2D nOe) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological molecules. *Biochem. Biophys. Res. Commun.*, 95, 1–6.
- LAMB, G.D., CELLINI, M.A. & STEPHENSON, D.G. (2001). Different Ca²⁺ releasing action of caffeine and depolarisation in skeletal muscle fibres of the rat. *J. Physiol.*, **531**, 715–728.
- LAMB, G.D., EL-HAYEK, R., IKEMOTO, N. & STEPHENSON, D.G. (2000). Effects of dihydropyridine receptor II–III loop peptides on Ca²⁺ release in skinned skeletal muscle fibers. *Am. J. Physiol. Cell Physiol.*, **279**, C891–C905.
- LAMB, G.D. & STEPHENSON, D.G. (1994). Effects of intracellular pH and [Mg⁺⁺] on excitation–contraction coupling in skeletal muscle fibres of the rat. *J. Physiol.*, **478**, 331–339.
- LAVER, D.R., RODEN, L.D., AHERN, G.P., EAGER, K.R., JUNANKAR, P.R. & DULHUNTY, A.F. (1995). Cytoplasmic Ca²⁺ inhibits the ryanodine receptor from cardiac muscle. *J. Membr. Biol.*, **147**, 7–22.
- MACLENNAN, D.H., RICE, W.J. & GREEN, N.M. (1997). The mechanism of Ca²⁺ transport by sarco(endo)plasmic reticulum Ca²⁺-ATPases. *J. Biol. Chem.*, **272**, 28815–28818.
- MOSBAH, A., KHARRAT, R., FAJLOUN, Z., RENISIO, J.G., BLANC, E., SABATIER, J.M., EL AYEB, M. & DARBON, H. (2000). A new fold in the scorpion toxin family, associated with an activity on a ryanodine-sensitive calcium channel. *Proteins*, **40**, 436–442.
- POSTERINO, G.S. & LAMB, G.D. (1998). Effect of nifedipine on depolarization-induced force responses in skinned skeletal muscle fibres of rat and toad. *J. Muscle Res. Cell Motil.*, **19**, 53–65.
- PROENZA, C., WILKENS, C.M. & BEAM, K.G. (2000). Excitation—contraction coupling is not affected by scrambled sequence in residues 681–690 of the dihydropyridine receptor II–III loop. *J. Biol. Chem.*. 275, 29935–29937.
- SAGARA, Y. & INESI, G. (1991). Inhibition of the sarcoplasmic reticulum Ca⁺⁺ transport ATPase by thapsigargin at subnanomolar concentrations. *J. Biol. Chem.*, **266**, 13503–13506.
- STANGE, M., TRIPATHY, A. & MEISSNER, G. (2001). Two domains in dihydropyridine receptor activate the skeletal muscle Ca(2+) release channel. *Biophys. J.*, **81**, 1419–1429.
- TANABE, T., BEAM, K.G., POWELL, J.A. & NUMA, S. (1988). Restoration of excitation-contraction coupling and slow calcium current in dysgenic muscle by dihydropyridine receptor complementary DNA. *Nature*, 336, 134–139.
- TOTH, I., & KERI, G. (2003). Molecular Pathomechanisms and New Trends in Drug Research. London and New York: Taylor & Francis.
- TOTH, I., MALKINSON, J.P., FLINN, N.S., DROUILLAT, B., HOR-VATH, A., ERCHEGYI, J., IDEI, M., VENETIANER, A., ARTURSSON, P., LAZOROVA, L., SZENDE, B. & KERI, G. (1999). Novel lipoamino acid- and liposaccharide-based system for peptide delivery: application for oral administration of tumor-selective somatostatin analogues. J. Med. Chem., 42, 4010–4013.
- TRIPATHY, A., RESCH, W., XU, L., VALDIVIA, H.H. & MEISSNER, G. (1998). Imperatoxin A induces subconductance states in Ca²⁺ release channels (ryanodine receptors) of cardiac and skeletal muscle. *J. Gen. Physiol.*, **111**, 679–690.
- WILKENS, C.M., KASIELKE, N., FLUCHER, B.E., BEAM, K.G. & GRABNER, M. (2001). Excitation-contraction coupling is unaffected by drastic alteration of the sequence surrounding residues L720–L764 of the alpha 1S II–III loop. *Proc. Natl. Acad. Sci. U.S.A.*, **98**, 5892–5897.
- WONG, A.K., ROSS, B.P., CHAN, Y.N., ARTURSSON, P., LAZOROVA, L., JONES, A. & TOTH, I. (2002). Determination of transport in the Caco-2 cell assay of compounds varying in lipophilicity using LC–MS: enhanced transport of Leu-enkephalin analogues. *Eur. J. Pharm. Sci.*, 16, 113–118.

(Received June 1, 2004 Revised July 30, 2004 Accepted August 23, 2004)